Convex approximations for a class of mixed-integer recourse models

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex approximations for a class of mixed-integer recourse models

We consider mixed-integer recourse (MIR) models with a single recourse constraint. We relate the secondstage value function of such problems to the expected simple integer recourse (SIR) shortage function. This allows to construct convex approximations for MIR problems by the same approach used for SIR models.

متن کامل

Convex approximations for complete integer recourse models

We consider convex approximations of the expected value function of a two-stage integer recourse problem. The convex approximations are obtained by perturbing the distribution of the random right-hand side vector. It is shown that the approximation is optimal for the class of problems with totally unimodular recourse matrices. For problems not in this class, the result is a convex lower bound t...

متن کامل

Convex Approximations for a Class of Integer Recourse Models: A Uniform Error Bound

We discuss the performance of the convex approximations introduced by Van der Vlerk [2004] for the class of integer recourse problems with totally unimodular (TU) recourse matrices. We show that the main result in Van der Vlerk [2004] needs stronger assumptions, so that a performance guarantee for the convex approximations is lacking in general. In order to obtain such a performance guarantee, ...

متن کامل

A convex approximation for mixed-integer recourse models

We develop a convex approximation for two-stage mixed-integer recourse models and we derive an error bound for this approximation that depends on all total variations of the probability density functions of the random variables in the model. We show that the error bound converges to zero if all these total variations converge to zero. Our convex approximation is a generalization of the one in C...

متن کامل

A convex approximation for mixed-integer recourse models

We develop a convex approximation for two-stage mixed-integer recourse models and we derive an error bound for this approximation that depends on all total variations of the probability density functions of the random variables in the model. We show that the error bound converges to zero if all these total variations converge to zero. Our convex approximation is a generalization of the one in C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Operations Research

سال: 2009

ISSN: 0254-5330,1572-9338

DOI: 10.1007/s10479-009-0591-7